
Section 3
RMI (Remote Method Invocation)



RMI (Remote Method Invocation)

• The RMI (Remote Method Invocation) is an API that provides a
mechanism to create distributed application in java. The RMI allows
an object to invoke methods on an object running in another JVM.

• The RMI provides remote communication between the applications
using two objects stub and skeleton.



Understanding stub and skeleton

• RMI uses stub and skeleton object for communication with the remote object.

• A remote object is an object whose method can be invoked from another JVM. 
Let's understand the stub and skeleton objects:

• Stub : The stub is an object, acts as a gateway for the client side. All the outgoing
requests are routed through it. It resides at the client side and represents the
remote object. When the caller invokes method on the stub object, it does the
following tasks:
• It initiates a connection with remote Virtual Machine (JVM),

• It writes and transmits (marshals) the parameters to the remote Virtual Machine (JVM),

• It waits for the result

• It reads (unmarshals) the return value or exception, and

• It finally, returns the value to the caller.



Understanding stub and skeleton

• skeleton : The skeleton is an object, acts as a gateway for the server
side object. All the incoming requests are routed through it. When
the skeleton receives the incoming request, it does the following
tasks:

• It reads the parameter for the remote method

• It invokes the method on the actual remote object, and

• It writes and transmits (marshals) the result to the caller.



Understanding stub and skeleton

•



Understanding requirements for the distributed 
applications

• If any application performs these tasks, it can be distributed
application.

• The application need to locate the remote method

• It need to provide the communication with the remote objects,
and

• The application need to load the class definitions for the objects.

• The RMI application have all these features, so it is called the
distributed application.



Java RMI Example

• The is given the 6 steps to write the RMI program.
• Create the remote interface.
• Provide the implementation of the remote interface.
• Compile the implementation class and create the stub and

skeleton objects using the rmic tool.
• Start the registry service by rmiregistry tool.
• Create and start the remote application.
• Create and start the client application.



RMI Example

• In this example, we have followed all the 6 steps to create
and run the rmi application.

• The client application need only two files, remote interface
and client application.

• In the rmi application, both client and server interacts with
the remote interface.

• The client application invokes methods on the proxy object,
RMI sends the request to the remote JVM. The return value
is sent back to the proxy object and then to the client
application.



RMI Example



1) create the remote interface

• For creating the remote interface, extend the Remote interface and
declare the RemoteException with all the methods of the remote
interface. Here, we are creating a remote interface that extends the
Remote interface. There is only one method named add() and it
declares RemoteException.



2) Provide the implementation of the remote 
interface

• Now provide the implementation of the remote interface. For 
providing the implementation of the Remote interface, we need to

• Either extend the UnicastRemoteObject class,

• or use the exportObject() method of the UnicastRemoteObject
class

• In case, you extend the UnicastRemoteObject class, you must define a 
constructor that declares RemoteException.



2) Provide the implementation of the remote 
interface

•



3) create the stub and skeleton objects using the 
rmic tool.

• Next step is to create stub and skeleton objects using the rmi
compiler. The rmic tool invokes the RMI compiler and creates stub 
and skeleton objects.

• rmic AdderRemote

•



4) Start the registry service by the rmiregistry tool

• Now start the registry service by using the rmiregistry tool. If you 
don't specify the port number, it uses a default port number. In this 
example, we are using the port number 5000.

• rmiregistry 5000



5) Create and run the server application

• Now rmi services need to be hosted in a server process. 

• The Naming class provides methods to get and store the remote object. 
The Naming class provides 5 methods.



5) Create and run the server application



5) Create and run the server application



6) Create and run the client application

• At the client we are getting the stub object by the lookup() method
of the Naming class and invoking the method on this object.

• In this example, we are running the server and client applications, in
the same machine so we are using localhost.

• If you want to access the remote object from another machine,
change the localhost to the host name (or IP address) where the
remote object is located.



6) Create and run the client application

•

•



references

•

•

https://www.javatpoint.com/RMI


